Particle hydrodynamics of the electrical discharge machining process. Part 1: Physical considerations and wire EDM process improvement
نویسندگان
چکیده
During these last years, the evolution of the machining speed of the EDM processes has become a key challenge for this technology. The recent progress made on the spark generators leads to a higher production speed in all processes such wire EDM, die-sinking, drilling, milling, etc. Nevertheless, if the electrical process is developing fast, many limiting factors still remain under investigations. In this context, our group started 7 years ago a research program to increase the understanding of the EDM particle hydrodynamics. We describe in this paper some results obtained and discuss the physical aspects related to the evacuation of the machining debris. During the EDM process, if the cleaning of the dielectric is not effective and some debris remain in the gap, the electrical resistance is locally reduced and the spark occurs at the same place. The process cannot go farther. In this situation, i.e. when the spark frequency and power are high enough, the machining speed is governed mainly by hydrodynamics. In this paper we will present efficient strategies to clean the gap in the wire EDM (part 1) and die sinking processes (part 2). For the wire EDM process (part 1), we have designed and analysed dielectric injection nozzles with the aim of improving the cleaning processes in the gap. Three main tools have been used to achieve this goal. The first is a fluid flow simulation model using CFD solvers. Then, the results have been validated using experimental techniques at full scale on EDM machines. Finally, a test rig has been developed and experimental analyses have been done. © 2013 The Authors. Published by Elsevier B.V. Selection and/or peer-review under responsibility of Professor Bert Lauwers
منابع مشابه
Intelligent Knowledge Based System Approach for Optimization of Design and Manufacturing Process for Wire-Electrical Discharge Machining
Wire electrical discharge machining (WEDM) is a method to cut conductive materials with a thin electrode that follows a programmed path. The electrode is a thin wire. Typical diameters range from .004" - .012" (.10mm - .30mm) although smaller and larger diameters are available. WEDM is a thermal machining process capable of accurately machining parts with varying hardness or complex shapes. WED...
متن کاملIntelligent Knowledge Based System Approach for Optimization of Design and Manufacturing Process for Wire-Electrical Discharge Machining
Wire electrical discharge machining (WEDM) is a method to cut conductive materials with a thin electrode that follows a programmed path. The electrode is a thin wire. Typical diameters range from .004" - .012" (.10mm - .30mm) although smaller and larger diameters are available. WEDM is a thermal machining process capable of accurately machining parts with varying hardness or complex shapes. WED...
متن کاملAdaptive Control of Machining Process Using Electrical Discharging Method (EDM) Based on Self-Tuning Regulator (STR)
In order to improve the optimal performance of a machining process, a booster to improve the serve control system performance with high stability for EDM is needed. According to precise movement of machining process using electrical discharge (EMD), adaptive control is proposed as a major option for accuracy and performance improvement. This article is done to design adaptive controller based o...
متن کاملOptimisation of wire-cut EDM process parameter by Grey-based response surface methodology
Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such ...
متن کاملImprovement of Surface Finish when EDM AISI 2312 Hot Worked Steel using Taguchi Approach and Genetic Algorithm
Nowadays, Electrical Discharge Machining (EDM) has become one of the most extensively used non-traditional material removal process. Its unique feature of using thermal energy to machine hard to machine electrically conductive materials is its distinctive advantage in the manufacturing of moulds, dies and aerospace components. Howevere, EDM is a costly process and hence proper selection of its ...
متن کامل